6.7 Entropy change in Rigid tank#
Problem Statement#
Hydrogen is heated up in a rigid tank from \(P=10\:kPa\) and \(T=10^{\circ} C\) till its temperature increases to \(T=55^{\circ} C\). Determine the changes in specific entropy,
a) assuming ideal gas
b) using CoolProp
c) calculate the error
Solution Approach for a)#
the tank is rigid therefore the density of hydrogen remains constant
\(D_1 = D_2\)
to calculate changes in specific entropy assuming ideal gas
\(s_2-s_1=C_pln(T_2/T_1)-Rln(P_2/P_1)\)
# import the libraries we'll need
import CoolProp.CoolProp as CP
import numpy as np
#define variables
fluid = 'hydrogen'
R = 4.124 #hydrogen gas constant kJ/kg.K
C_p = 14.307 #hydrogen Cp kJ/kg.K
P_1 = 10e+3 #initial pressure in Pa
T_1 = 10 + 273.15 #initial temperature in K
T_2 = 55 + 273.15 #final temperature in K
D_1 = CP.PropsSI("D", "T", T_1, "P", P_1, fluid) #initial density in kg/m3
D_2 = D_1 #constant density
P_2 = CP.PropsSI("P", "T", T_2, "D", D_2, fluid) #final pressure based on temperature and density in Pa
ds_a = C_p * np.log(T_2/T_1) - R * np.log(P_2/P_1) #changes in entropy in kJ/kg.k
print('The entropy change using ideal gas assumption is:', f"{ds_a:.3f}", 'kJ/kg.K')
The entropy change using ideal gas assumption is: 1.502 kJ/kg.K
Solution Approach for b)#
specific entropy values are to be extracted from coolprop
s_1 = CP.PropsSI("S", "T", T_1, "P", P_1, fluid)/1000 #initial entropy in kJ/kg.K
s_2 = CP.PropsSI("S", "T", T_2, "P", P_2, fluid)/1000 #final entropy in kJ/kg.K
ds_b = s_2 - s_1 #changes in entropy in kJ/kg.K
print('The entropy change using CoolProp is:', f"{ds_b:.3f}", 'kJ/kg.K')
The entropy change using CoolProp is: 1.504 kJ/kg.K
Solution Approach for c)#
E = np.absolute(ds_b - ds_a) / ds_b * 100
print('The error based on ideal gas assumption is:', f"{E:.1f}", '%')
The error based on ideal gas assumption is: 0.2 %